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I .  INTRODUCTION , NOTATION 

In  t he i r  seminal paper [ l l ] ,  Kuhn and Tucker proved an equivalence be- 

tween the existence of a saddle point and the maximization of a concave 

function f subject t o  20, a n d  g(x)LO, where 

functions.' Uzawa l a t e r  provided a somewhat 

[14], as well as extending the basic theorem 

g i s  a vector of concave 

simpler proof of t h i s  resu l t  

t o  the ,case where t h e  function - 
3 f and  the functions g i  are n o t  necessarily d i f fe ren t iab le  nor even continuous. 

I n  a fundamental a r t i c l e  in the same volume, Hurwicz [8] generalized the K u h n -  

Tucker resu l t s  t o  the case where t h e  functions involved map a ( r e a l )  l inear  

space in to  l inear  topological spaces; as well as providing in te res t ing  a n d  

i m p o r t a n t  extensions of the saddle point notion t o  cases involving more 

general orderings. 4 

Ihe purpose of th i s  paper i s  two-fold: 

1 . )  

- 

We shal l  provide a f a i r l y  systematic treatment of the theory of 

the constrained maximization of nondifferentiable vecior-valued functions 

defined on a finite-dimensional Euclidean space (Sec. 11) .  

much of t h i s  portion of the paper'is n o t  new. 

In some respects,  

I n  f a c t ,  some cf the theorems 

presented are special cases of Professor Hurwiczls resu l t s  fo r  the non-  

d i f fe ren t iab le  case. However, where the resu l t s  presented here are special 

w cases of Professor Hurwicz's work, we have generally been able t o  take 

advantage of the more elementary spaces with which we are  concerned here t o  



develop somewhat simplei- pi-oofs. 

i n  S e c t i o n  I 1  a re  a t  l e a s t  m i l d  g e n e r a l i z a t i o n s  o f  t h e  h e r e t o f o r e  p u b l i s h e d  

work on t h e  cons t ra ined  rridxiiiiiiaii’oii of  nondSfferent<ah!e vec to r -Va l  ued 

f u n c t i o n s .  

Marezver, s m e  o f  the r e s u l t s  p resented  

2.)  I n  Sec t i on  111, we undertake a sys temat i c  e x p l o r a t i o n  o f  t h e  

n a t u r e  o f  t he  c o n s t r a i n t  q u a l i f i c a t i o n s  which have been used i n  t h i s  t ype  

of max im iza t i on  problem. the  

c o n s t r a i n t  q u a l i f i c a t i o n  p l a y s  i n  the  problem, and the  r e l a t i o n s h i p s  

among t h e  va r ious  c o n s t r a i n t  q u a l i f i c a t i o n s  which have been used. 

We t h e r e  examine b o t h  t h e  geomet r ic  r o l e  

I n  o r d e r  t o  more c l e a r l y  d e f i n e  t h e  k i n d  of problem w i t h  which we s h a l l  

be d e a l i n g ,  suppose we f i r s t  i n t r o d u c e  t h e  f o l l o w i n g  n o t a t i o n .  

L e t  En denote n-d imensional  Eucl idean space. We s h a l l  use x ,  y, z ,  

e t c . ,  t o  denote p o i n t s  i n  t h i s  space, which w e ‘ t h i n k  o f  (where t h e  d i s -  

t i n c t i o n  i s  i m p o r t a n t )  as column vec to rs .  I f  x i s  t h e  v e c t o r  w i t h  

elements xl, x2, . . ., xn, we w r i t e  

x = <xl, x2, . . ., x >. n 
We s h a l l  denote t h e  s e t  of u n i t  (Car tes 

(e , . . ., e 1 ,  i .e . ,  1 n - .. 

an) coo rd ina te  v e c t o r s  i n  En by 

I e = <tiil, tii2, . . ., tiin> f o r  i=l, . . ., n;  

where Aiij i s  t h e  Kronecker  d e l t a .  

We s h a l l  use what seems t o  be a s tandard  n o t a t i o n  f o r  v e c t o r  i n e q u a l i t i e s :  

x>y i f f  x . 3 .  f o r  i=l, . . ., n; 

x>y i f f  x>y - and x fy ;  

x>>y i f f  x .>y .  f o r  i = l ,  . . ., n. 

1- 1 

1 1  + 
Using these d e f i n i t i o n s ,  we de f i ne  t h e  non-negat ive o r t h a n t  i n  En, En, by :  
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* where en  denotes t h e  o r i g i n  i n  En. 

rlnnn+a t h e  rea! l i n e j  a.nd E 

I n  l i n e  w i t h  t h i s  n o t a t i o n ,  E, w i l l  
+ 

t h e  s e t  o f  non-negat ive  r e a l  numbers. 
2 i ULIIVlrL 

I f  x, YEE,, we s h a l l  denote the :  

1.)  I N N E R  PRODUCT --c_ OF x AND by X-y ,  -- 
n x - y  = xiyi. 

11x1 I = X ' X .  

2.) --- NORM OF x by 11x1 1 , Q., 

3 . )  DISTANCE BETWEEN x AND y ( t h e  m e t r i c  on En) by 

d(x,  Y) = I I X - Y l  I = CCi=,(Xi-Yi) n 2 1 1/2 

4.) SPHERICAL NEIGHBORHOOD OF x MITH RADIUS E>O by  

N(x, E )  = { F E n l  d(x ,  Y)<E}. 

Where the  r a d i u s  i s  un impor tan t ,  we use N(x) t o  denote an a r b i t r a r y  

(non-empty) s p h e r i c a l  neighborhood o f  x .  

I f  XCEn, we denote the  c l o s u r e  o f  X by X, and the  i n t e r i o r  o f  X by  

i n t ( X ) ,  i .e., 

i n t ( X )  = { x E X I  G N ( x ) )  N(x)cX}. 

If A and B are subsets o f  Em and En, r e s p e c t i v e l y ,  we denote the  Car tes ian  

Produc t  o f  A and B by 

AxB = {<a, b>EEm+,,l aEA, bEB). 

Extending the above n o t a t i o n ,  we s h a l l  f r e q u e n t l y  p a r t i t i o n  vec to rs  i n ,  say, 

E , w r i t i n g ,  e.., x = <x', x2>. Where we w r i t e  m 

we s h a l l  unders tand t h a t  

1 2 x &En, x E E  
P '  
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We say t h a t  a s e t  XGE_ i s :  

1.) a CONE i f  (XEX and XsEf): 

3 . )  ~- CONVEX i f  (x ' ,  x EX and XE[O, 11 ) :  Ax + ( l - X ) x  EX 

3 . )  

" . 

AXEX. 
2 1 2 

1 2  + 1 2 a CONVEX CONE i f  (x , x EX and Aly X EE ) X1x tA2x EX; 2 1  
w h i l e  i f  XsE,, we d e f i n e :  

1.) the  CONJUGATE -- CONE OF X-, denoted X*, by 

X* = {y&En I ( x ~ X ) x - y , Y ) } ,  

2.) X" = {yEEA (xEX)x-y  = 0 )  

3 . )  -X = {yEE,I ( -1)YEXI 

4.) ( f o r  YGE,): 

X+Y = {z&EnI ( IxEX, YEY)  z=x+yl .  

F i n a l l y ,  we s h a l l  make f requen t  use o f  

INITION 1: L e t  g:  E,+€,. We s h a l l  say 

t h e  form: 

g (x )  = Gx+b, 

E - 

the f o l l o w i n g  d e f i n i t i o n s .  

h a t  g i s  AFFINE i f  g i s  o f  5 
-~ 

where G i s  an n m  m a t r i x  o f  constants,  and b i s  an nX1 column v e c t o r  o f  

con s t an t s  . 
DEFINITION 2: 

cone. 

L e t  %En be convex, l e t  g: DX,' and l e t  YGEm be a convex 

2 We s h a l l  say t h a t  g i s  Y-CONCAVE -- ON D i f  f o r  every  x1 , x ED and 

XE [ O ,  11, we have 

1 g Ax +( 1 - x)x21-[ Xg ( x1 ) +( 7 -X) g ( x2 )  3 EY . 
Th is  second d e f i n i t i o n  i s  e q u i v a l e n t  ( f o r  t he  case w i t h  which w e ' r e  

d e a l i n g  here)  t o  t h e  d e f i n i t i o n  o f  concav i t y  i n t r o d u c e d  by P ro fesso r  Hurwicz 

i n  [8] ( p .  68). 

e q u i v a l e n t  t o  t h e  s ta tement  t h a t  g i s  E,-concave on D; w h i l e  i f  g i s  an 

Note t h a t  i f  g: D+E1, t h e  usual  d e f i n i t i o n  o f  c o n c a v i t y  i s  
+ 
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m-vcctor of functions, sach o f  w ~ ! c / :  i s  CORC;IVP by t h e  iusual def in i t ion ,  

then g i s  Em-concave on D. 
L t 

.. 
I we now s e t  o u t  t he  i i i a x i m f z ~ t i o n  prcb?e!~? ~ j t h  !~!rhich we shall deal in 

this paper as follows: 

DEFINITION 3 :  Let DSE,, and suppose tha t :  

P ’  
f :  D J n ,  g :  D+E 

and t h a t  XGD i s  non-empty, YGE i s  a non-empty convex cone. We shal l  then 

say t h a t  <f, g,X,  Y >  defines a MAXIMIZATION PROBLEM, n ,  and t h a t  x is  a 

SOLUTION - of provided t h a t :  

P 

- 
(1  1 XEX,  g(X)cY, 

and 

(2 )  
A 

? I J ~ E X  2 g ( t > E Y  and f ( c ) > f ( F ) . 6  

Notice t h a t  i f  n = l ,  so tha t  f is  real-valued, we have, as a special case,  

the maximization ( i n  the usual sense) of a real-valued function subject t o  

the constraints  xEX and g ( x ) E Y .  Moreover, i n  the very special case where 

n = l ,  X = E m ,  and Y=E * our  maximization problem reduces t o  the much more 

famil iar  problem of maximizing f subject t o  x>em, - g ( x ) > e p .  - 

t h a t ,  s ince ( 0  1 i s  a convex cone, the general maximization problem formu- 

lated i n  Definition 3 includes as a special case the classical  Lagrangian 

problem of maximizing a real-valued function f subject t o  the‘ constraint  

g ( x ) = e  ( i n  the case where n = l ,  X=D, and Y={e 1 )  . 
suppose we wish t o  maximize ( i n  the sense of def ini t ion 3) 

valued function f subject t o  XEX and 

t 4- 
P’  

We note a lso 

P 

7 As a f inal  example, 
P 

8 some vector- 

h i ( x )  = bi f o r  i = l ,  . . ., q; 

h i ( x ) 2 b i  f o r  i=q+ l ,  . . ., r 
hi(x)Lbi  f o r  i = r + l ,  . . ., p .  

(3) 
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P, 

Def ine  

6 

and 

Then Y, be ing  the  Car tes ian  P roduc t  o f  convex cones, i s  i t s e l f  a convex 

cone; and t h e  c o n s t r a i n t s  i n  (3)  can e q u i v a l e n t l y  be expressed by  t h e  

requ i rement  g(x)EY.’ Hence t h i s  example i s  a l s o  a s p e c i a l  case o f  the  

t ype  o f  genera l  max imiza t ion  problem fo rmu la ted  i n  D e f i n i t i o n  3.  

One f u r t h e r  aspec t  o f  t h i s  d e f i n i t i o n  deserves some d i scuss ion .  The 

reader  w i l l  n o t e  t h a t  i n  D e f i n i t i o n  3, we have n o t  r e q u i r e d  D, t h2  domain 

o f  d e f i n i t i o n  o f  t h e  f u n c t i o n s  f and g, t o  c o i n c i d e  w i t h  Em (and i n  f a c t ,  

o u r  d e f i n i t i o n  and t h e  theorems o f  the n e x t  s e c t i o n  app ly  t o  t h e  case 

where D=X). The e x t e n t  o f  t h e  domain o f  d e f i n i t i o n  i s  i m p o r t a n t  i n  t h i s  

k i n d  o f  max im iza t i on  problem f o r  a t  l e a s t  two reasons.  

F i r s t  o f  a l l ,  t h e  sadd le  p o i n t  theorems o f  t h e  n e x t  s e c t i o n  do 

n o t  r e q u i r e  t h e  f u n c t i o n s  f and g t o  be cont inuous .  

theorems (Theorems 3-5 o f  S e c t i o n  11) do r e q u i r e  f and g t o  be concave ( i n  

However, t h e  n e c e s s i t y  . 

t h e  usua l  a p p l i c a t i o n s ) ;  

an open convex s e t  i n  Em i s  cont inuous on t h i s  s e t  (see Berye [ 6 ] ,  p. 193). 

Hence i f  we assume D=Em, we wou ld  i m p l i c i t l y  be assuming t h a t  f and g were 

and a f u n c t i o n  which i s  d e f i n e d  and concave on 

cont inuous.  
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A mcrc imps r tan t  cofis<deration st.eins froi? the following reasoniticj. 

One m i g h t  conjecture l o  tha t  i f  a function i s  defined a n d  concave on a 

ccj i ivex set jn E ;+ I :s - afxays e x t e n d i b l e  tc! a fu~ction which i s  defined 
m’ 

and concave over a l l  o f  E,,,. 

of th i s  statement, i t  i s  incorrect ;  as we can eas i ly  see from the follow- 

i n g  counterexample: l e t  

However, i n  s p i t e  of the apparent p laus ib i l i ty  

I To i f  x=o 
f ( x )  = ;c i f  x>o. 

I t  i s  c l ea r  t h a t  f i s  defined and concave on E t ,  b u t  i t  i s  obvious t h a t  

there i s  no  way of extending i t  t o  a function which i s  defined a n d  con- 

cave over a l l  of 

defined arid concave over the non-negative orthant i n  E,,, (e.$. , a production 

funct ion) ,  a saddle point theorem which requires the domain of def ini t ion 

Hence i f  we have, say,  a function f which i s  

t o  be Em (and the functions f and  g t o  be concave on t h i s  domain) i s  n o t  

applicable w i t h o u t  enough additional specif icat ions on the nature of the 

function f t o  guarantee t h a t  i t  i s  extendible. The foniiulation of o u r  

Definition 3 ,  which is  followed i n  the theorems of the next s ec t i cn ,  is 

applicable t o  this s o r t  of  s i t u a t i o n  w i t h o u t  the additional specif icat ions.  

DEFINITION 4:  

We define the 

on DXE xE by: 

Let n be the maximization problem defined by < f ,  g ,  X Y > .  

GENERALIZED LAGRANGIAN EXPRESSION ASSOCIATED WITH T , QT, - ~ - 

n P  
@&x, v ,  w )  = v*f(x)+w.g(x).  12  

In the next sect ion,  we sha l l  be concerned with the invest.igation of . 

the relationship between the existence of the solut-ion of a max imiza t ion  

problem, n, and the existence o f  a Saddle Point,  o f  one of the following 

types,  f o r  an. 
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DEFINITIONS :13 Let < f ,  g X ,  Y > d e f i n e  a maximization problerii, i r  , and l e t  ------ 
ax deno te  the General ized Lagrangian Expression a s s o c i a t e d  w i t h  T .  

Then we s h a l l  s ay  t h a t :  
- - -  

i s  a GENERALIZED SADDLE POINT (GSP) f o r  5 . )  a p o i n t  < x ,  v ,  W > E E , , , , ~ + ~  -~ ___ 
- - _  , o r  t h a t  o has a GSP a t  < x ,  v ,  w>, i f :  

%r TT 

( 4 )  

and 

( 5 )  an(x,  V, i ) z ~ ~ ( T ,  7, $2 an (X, V, w) f o r  a l l  X E X ,  WEP. 

Extending this  terminology soinewhat, we s h a l l  sonietiiiies s a y  tha t@71 has 
- -  t a GSP a t  TEX, o r  t h a t  a GSP ex is t s  f o r  aTr a t  X, i f J<v ,  G>&EnxY*:)<F, v ,  w> 

i s  a Genera l i zed  Sadd le  P o i n t  f o r  an. 

f o r  the  t y p e s  o f  s a d d l e  p o i n t s  def ined i n  the f o l l o w i n g . )  

( S i m i l a r  conven t ions  w i l l  be fol lowed 

- - -  
i s  a GENERALIZED NON-DEGENERATE SADDLE - - __-- m t n t p  6.) a p o i n t  <x, v ,  WXE 

P O I N T  (GNSP) f o r  an, o r  t h a t  an has  a GNSP a . t  <X, V, w>, i f :  
- 
X E X ,  ~ E E ~ \ I B ~ } ~ ~ ,  WEY*, 

- _ -  
and (5 )  h o l d s .  

a t  a, v ,  w>and $ 6  . 
n 

E q u i v a l e n t l y ,  @T has a GNSP a t  < x ,  v ,  w> i f  @ has a GSP 
,ir 

- - -_ 

- - -  
i s  a GENERALIZED P R O P E R  SADDLE POINT(GPSP) 7 . )  a p o i n t  a, w>&Emtn+p -- _-___ _I- 

I 

f o r  a i f  XEX, V>>e,,, WEY*, 

and ( 5 )  h o l d s .  
Tr 

- -  
8.)  a p o i n t  a ,  W>EE i s  a SADDLE POINT f o r  @ ( i n  the s p e c i a l  c a s e  

TT _- 
- m+P 

where n = l ,  u., f :  D+El) i f  @ has a GNSP a t  <T, 1 ,  W > E E , + ~ + ~ ,  t h a t  i s ,  i f :  
7r 

- 
( 6 )  X€X, wry*,  
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- 
Note t h a t  for  the special case where n = l  ( i . e . ,  __ where f: C-tE,), the 

I 

dis t inc t ion  between a GNSP and a GPSP disappears ( t h e  d i s t inc t ion  i s  of 

some importance when n > 1 ?  however, as we shal l  s ee ) .  Moreover, in t h e  case 

where n = l ,  the existence of a GNSP is logical ly  equivalent t o  the existence 
a -  

of a Saddle Point. To see t h i s ,  we f i r s t  note t h a t  a Saddle Point in t h i s  

s i tua t ion  i s  a special case of a GNSP (having v=1). 

a GNSP a t  a, v ,  ;>&E 

Saddle Point a t  2, (l/v)w>. 

Moreover, i f  Qx has 
- -  

* then, as we can eas i ly  ver i fy ,  @T has a m+l +p ' 

11. THE PRINCIPAL THEOREMS 

The following theorem i s  a special case of theorem V . l ,  p .  86, i n  

Hurwicz [8]. I t  deals with a suf f ic ien t  condition for  a constrained 

maximum; a n d ,  i t  should be noted, holds w i t h  n o  r e s t r i c t ive  assumptions 

(e.. , 
sizing t h a t  X can be - any p o i n t  s e t  in Em (even a f i n i t e  point s e t ) ,  while 

concavity) on f and g whatever. I t  i s  a lso perhaps w o r t h  empha- 

Y can be any closed convex cone in E ( a n d  we may have, for  instance 
P - 

YIP E;= {ep 11.  
THEOREM 1 (HURWI CZ) : 

I f :  

I . )  4,  g, X, Y>defines  a maximization problem, n (see Definition 3 ) ,  

where Y i s  a closed convex cone ; 

a, v, w>EEm+ntp i s  a GPSP f o r  Q ; then % i s  a solution of n. 
- -_ - 

2.) ,rr 

-I_ PROOF (HURMICZ) : 

by hypothesis ( 2 )  , we have 
- - 

( 1  1 X E X ,  %>en, WEY*, 

a n d  
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i m p l i e s  Y *  a convex cone). Hence, froin ( 3 ) ,  we have: 
- 
w-g(X)  2 (w+W)-g(X) f o r  a l l  WEY*, 

o r  

( 4 )  w.g(X),O -- f o r  a l l  KY*. 

Therefore g(x)EY**; However, s i n c e  Y i s  a c losed  convex cone, we have 

(see K a r l i n  [ l o ] ,  p. 403) y=.Y**. Hence 

( 5 )  d 3 E Y .  

Moreover, i t  f o l l o w s  immedia te ly  f r o m  (1)  , ( 3 ) ,  and ( 5 )  , t h a t  
- 

( 6 )  w * g (X) =o 

Suppose now t h a t  XEX and g(x)EY. 'Then by (1 )  , ( 6 ) ,  and 1.  h .s .  o f  ( 2 )  , 

we have : 
- 
v f (x>2y .  f (X)+W' g ( x ) L F  f (X) +w- g (X) =v. f (X) . 

Hence 

( 7 )  v . f ( x ) Z Y . f ( x )  f o r  a l l  xEX2g(x)&Y.  

There fore ,  s i n c e  i b e n ,  ( 7 )  i m p l i e s  t h a t :  

- 

Y ~ E X  w i t h  g(hx)EY 3 f ( h x ) > f ( x )  , 

and i t  f o l l o w s  f rom (1 )  and ( 5 )  t h a t  x i s  a s o l u t i o n  o f  TT. 

Q . E . D .  

Our n e x t  theorem dea ls  w i t h  necessary c o n d i t i o n s  f o r  a cons t ra ined  

maximum, and i s  a g e n e r a l i z a t i o n  o f  a theorem by Berge ( C f . ,  - Berge [ 6 ] ,  

p .  2 2 7 ) . 1 5  

[8], a l though  i t  i s  n o t  s t a t e d  e x p l i c i t l y .  

The theorem s t a t e d  here  i s  i m p l i c i t  i n  Hurw icz ' s  t rea tmen t  i n  

I t  i s  a f a i r l y  n a t u r a l  ex tens ion  

o f  t h e  approach t o  t h e  c l a s s i c a l  Lagrangian problem developed by B l i s s  i n - [ 7 ] .  



I f :  

1 1 . 1  \ <s 1 9  9, x, y >  d e f i n e s  a n!aX,jini7ation problem, T ,  where: 

a , )  X i s  convex, 

b . )  

c . )  

t f i s  concave (k. , En-concave) on X ,  

g i s  Y-concave on X ,  

2. )  FEY, i s  a solution f o r  T ;  

then 
_ _ _  t -  3 Vd,, wEY*:jQThas a GSP a t  o(, v s  w > .  

The method of proof used in t h e  following i s  an adaptation of t h a t  

originated by Hurwicz i n  [8] and Uzawa in [14]. I t  de'pends heavily on 

two convex and d i s jo in t  s e t s ,  A and B,  which are ( i n  oc r  case) subsets 

I n  order t o  define these s e t s ,  we f i r s t  define: 

L 

We note t h a t  h i s  Z-concave on X ,  and t h a t  Z i s  a convex cone (s ince i t  

i s  the Cartesian Produc t  of two convex cones ) . 
For each X E X ,  define: 

A ( x )  = {a&E I h(x)-a&Zl. ( 9 )  n+P 
We then define: 

A = (a&E I (gx&X)a&A(x)) = A ( x )  
n+P XE x (10) 

= { a  = < s ,  

and 

t > E E  1 ( j x E X ) f ( X ) > S ,  - g ( X ) - t E Y )  
n+P 
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r, 

iJf{MA 1; ll.--!-.- +L ,,-n+hnc-nc -~ 
and (11)  a re  d i s j o i n t ,  convex, and non-empty. Moreover, f o r  every  xEX, we 

UIIUCI L112 t i y p u L I I L J L 2  o f  Thcoren: 2, t h e  s e t s  P, and B d e f i n e d  -ir! ( I n )  

PROOF OF LElWA 1 : 

i.) Since e EZ, i t  i s  c l e a r  t h a t  
n+P 

( x E X )  : h(x)EA. 

S ince  t h i s  i s  t he  case, i t  i s  obvious t h a t  i f  X#@, then  A#@. I t  i s  a l s o  

obv ious t h a t  i f  Y # @ ,  then B # @ ;  and i t  i s  c l e a r  t h a t  B i s  convex, s i n c e  i t  

i s  t h e  Car tes ian  Produc t  o f  two convex se ts .  

ii.) I n  o r d e r  t o  p rove  t h a t  A i s  convex, suppose t h a t  
A 

(12)  a = G, b, ;=G, %>EA. 

Then .I x̂  , ;EX 3 
A h  

(13) n(x)-aEZ, 

(14)  h(x)-aEZ. 

Let X & [ O ,  l]GE1, and d e f i n e  

(15)  a ( A ) = A ~ + ( l - X ) ~ ,  

(16)  x(X)=&+(l-X);. 

- -  
t 

Since Z i s  convex , we have by (13 )  and (14)  : 

( 1 7) X [ h (? ) -^a] -t ( 1 -A ) [ h ( i )  -;] = Ah (2)  + ( 1 -A ) h (; ) -a ( A) EZ . 
Moreover, s i n c e  X i s  convex, and h i s  Z-concave on X: 

(18)  h[x(X)]-[Ah(Z)+( l - A ) h ( x ) ] ~ Z .  

Hence, s i n c e  Z i s  a convex cone, we have by (17)  and ( 1 8 ) :  

{ h [ x ( ) ] - [ A h ( x^ ) -t ( 1 -A ) h (i ) ] 1 +{Ah ( x̂  ) -t ( 1 -A ) h (x ) - a (A ) 1 = h [ x ( A ) ] 

The r e f  ore 

a ( x ) ~ A [ x ( A ) l &  A; 

and we conclude t h a t  A i s  convex. 



B u t  then, since <s^, f > & B ,  we have 

(19) f ( ; )&f(x) ,  - 
tEY,  g(Xn)-kY, 

a n d  therefore ,  since Y is  a convex cone: 

(20)  ( g ( ; ) - t ) t ;  = CJ(xh)EY. 

However, (19) and (20)  together contradict  the assumption t h a t  x i s  a solution 

of n .  Hence AnB=jJ. 

Q.E.D. 

--- LEMMA 2 :  

(10)  and ( 1 1 ) ,  

Under the hypotheses of Theorem 2 ,  and w i t h  A a n d  B defined as i n  

3 <i, $&:E 3 
n+P 

/ 

i . )  <V, ++e; 
i i . ) V-stW. t<Y.zti-y f o r  a1 1 <s , P E A ,  <z , y>&B; 

+ -  i i i . )  % E n ,  W E ~ * ,  

i v . )  V-f(x)tW.g(x)iV.f(X) f o r  a l l  X E X ,  

v . )  W.g(X)=o. 

PROOF OF LEMMA 2 :  

By Lenima 1 and the "separating hyperplane theorem" (Cf. ,  - Berge [6], p .  163): 

n+P 
3 <i, i&E 

sa t i s fy ing  ( i )  and ( i i ) .  

By the conclusion of Lenha 1 ,  c f ( x ) ,  g ( x ) > E A  f o r  every X E X .  Hence i t  

follows froin ( i i )  t h a t  we must have, i n  pa r t i cu la r :  



7 
- 

(22)  

from which i t  follows immediately t h a t :  

v . [ z - f ! F ) ] t G - [  r - g ( X ) ] ~  f o v  a l l  z 

- t -  
1tc-F " LLn 9 ~ ! E Y * ,  ( 2 2 )  

which ve r i f i e s  ( i i i ) .  

Since < f ( x ) ,  0 > i s  on the boundary of B and by Leinma 1 ,  P 
( x E X ) :  < f ( x ) ,  g ( x ) > & A ,  

i t  a l s o  follows from ( i i )  t h a t  we must have: 

(23)  v . f ( x ) + ~ - g ( x ) ( v * f ( x >  I f o r  a l l  X E X ,  

which v e r i f i e s  ( i v ) .  

- 

Finally,  l e t t i n g  x = x  on the 1.h.s. of ( 2 3 ) ,  a n d  u s i n g  ( 2 2 )  and the 

f a c t  t h a t  g(X)&Y, 

we have - 
- 
w ' g (X) =o , 

which v e r i f i e s  ( v ) .  

Q.E.D. 

We are a t  l a s t  ready to  prove Theorem 2.  

--- PROOF ___ O F  THEOREM 2:  

Combining ( i i i ) - ( v )  o f  the conclusion of Lema 2 ,  we have: 
- 
v * f (  x)+W- g (x).(_v. f (  Z) =V. f(x)+G. g (X)zV. f (  X)+w - g (X) f o r  a1 1 X E X  , WEY *. 

Combining t h i s  r e s u l t  w i t h  ( i i i )  o f  Lemina 2 and the def ini t ion of ?-, we see 

t h a t  <x, V, k> i s  a GSP f o r  (PI,. 

Q.E.D.  

Under cer ta in  assumptions, one obtains i n  the c lassical  theory of 

constrained extrema (with equality constraints ,  and where a1 1 the functions 

involved are  d i f f e ren t i ab le )  : 
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where x maximizes f subject  t o  g(x)=O 

of f ,  2 n d  y"x t h 2  m a t r i x  9-f p a r t i a l  d e r i v a t i v e s  [ 2 g . / a x . j .  

analogue of t h i s  resu l t  in the case where our maxiniand function i s  vector-. 

fx  represents the gradient vector 
P '  

Theorem 2 i s  t.hP 
1 J  

valued and nondifferentiable (more spec i f ica l ly ,  where our  maximization 

problem i s  of the form specif ied i n  Definition 3 ) .  

condition t o  the hypotheses implying ( 2 4 ) ,  we can conclude A l # O ,  and obtain: 

I f  we add the rank 

- _  
f, ( x  ) +A * g, (X) =o , 

where x=(l/Ao)A. Similar ly ,  i f  we add a constraint  qua l i f ica t ion  ( together  

with some assumptions about the dimensions of Y and X )  t o  the hypotheses of 

Theorem 2 ,  we can conclude tha t  v#e i n  our  GSP, and hence t h a t  a GNSP 

e x i s t s  a t  <x, w ,  v >  

we noted  i n  our e a r l i e r  discussion).16 This i s  e s sen t i a l ly  the content 

- - -  
(and i f  n=l obtain a Saddle Point a t  <x, (l/v)\lJ> as 

o f  Theorem 3 ,  t o  which we now turn. We s h a l l ,  however, have need f o r  the 

following lemmas in our  proof. The r e su l t  in Lemma 3 i s  qui te  well k n o w n ,  

and a proof i s  included here only for the sake of providing a convenient 

reference. 17 

LEMMA 3: 

y * K g - x )  - f o r  every XEX,  then y=0,. 

PROOF: 

Let XCE, ,  and suppose t h a t  ZEint ( X ) ,  yFEn. I f  y';;>v-x [ resp . ,  

- -  
I f  TEint(X) , A % O  3 ~ + A Y E ~ ,  and we have 

- _  
y*[x+Ay] = y*TtTy.y. 

Hence, i f  yfe,, 

The r e s u l t  with the reversed inequality follows immediately from t h i s .  

Q.E.D.  



? 

I f :  

16 

1 .  j g :  $,+En , where lieri, - 

2 . )  g i s  a f f i n e ,  Q., g ( x ) = G x + b ,  and rank ( G ) = n ,  

3 . )  XEEm, x E i n t ( X ) ;  
- 

then there e x i s t  open neighborhoods N1(X)G X ,  Nz[g(x)]G E n  ’3 

Nz[g(alG dh‘l  ( 3 1 .  
PROOF: 

P a r t i t i o n  t h e  m a t r i x  G by 

-- 

G=[G1 G 2 I 3  
where G1 i s  n x n ,  and we assume w.1.0.g.  t h a t  rank ( G l ) = n .  

3N1(X) ‘3 N1(X)C:X. 

Write 

By assumpt ion ,  

- -1 -2 x=<x x >, 

where ? E  E n ,  -2 x & E m + .  Then 3N3(x1) 3 zcN3(x -1 ) ? < z , ? > E N ~  , (a. 
Define h on En by 

h( z)=G1 z .  

I t  then fo l lows  by Theoreins 7-3 and 7-4 ,  p p .  141 and 143,  r e s p e c t i v e l y ,  i n  

Apostol [ l ]  , t h a t :  

3N4[h(y1)1 3 

B u t ,  i t  i s  c l e a r  t h a t  

Hence, no t ing  t h a t  i f  M i s  an open sphe re  c o n t a i n i n g  y, M+> i s  an open sphe re  

c o n t a i n i n g  y+y; we s e e  t h a t  i f  we def ine :  
- *  
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N 2  i s  

N, [g (x) 1 = N 3  [ h (d J + G 2 8 + b ,  

an open sphere containing g ( x ) a n d  

N2[g(W (1, g[N, (a1 - 
Q . E . D .  

THEOREM 3 :  

I f :  

-- 

1 . )  6, g ,  X ,  Y >  defines a inaxiiiiization problem,Ti , where: 

a . )  X i s  convex, int(X)+@, 
b . )  f i s  concave ( i  . e . ,  E,-concave) t on X ,  

-- 

c.)  Y i s  o f  the form Y=YlxY2, where 

i . )  YICEq, Y + E r  (q+r=p) 

g i s  of the fonn g ( x ) = < g ( ’ ) ( x ) ,  c j ( ’ ) (x)>,  where 

i i . )  i n t ( Y , ) + @  ( i n  E r )  

d . )  

i . )  g ( ” ) :  D + E ~ ,  J2): D+E, 

i i . )  g ( ’ )  is  affine18 (g ( l ) (x )=Gxtb ) ,  and we assume w 

t h a t  rank ( G ) = q  

i i i  .) g(2) is Y2-concavi on X ,  

2.) g s a t i s f i e s :  

CQ.,: i . )  2 x i & i n t ( X ) 3  g ( ’ ) ( x ’ ) ~ y 1  
- 

i i . )  : I~*&x 3 g(’)(x*)EY1,  g ( 2 ) ( x * ) & i n t ( Y 2 )  

3 . )  :EX i s  a solution of n; 

then 
t - 

v~[E,\{q,}],  FEY*:)$ has  a GNSP a t  <x, v, k>. 
Ti 

PROOF:  

1 . o . g .  

I t  i s  c l ea r  t h a t  g i s  Y-concave on  X .  Hence, we can readily verify t h a t  

the hypotheses o f  Theoreiii 2 are s a t i s f i e d .  Therefore, by Ttieotmei:: 2 :  
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- -  
(25) .J, w > f e  

- 
(26) v d i ,  KEY* 

and QTr has a GSP a t  <x, v ,  w > .  

(27) v-s+w.ts .z tw.y - for a l l  <s, t x A ,  <z, y x B ;  

where A and €3 are defined i n  (10)  and ( l l ) ,  above. 

- - -  
Moreover, by Lema 2 :  

- 

- -1 -2 -2 Writing W = M  ,w >, where ~ E E  w &Er, 9’  
we see t h a t  we have from ( 2 7 ) :  
(28) v - f ( x ) t ~ 1 . g ( 1 ) ( x ) ~ ~ 2 . g ( 2 ) ( x ) < ~ . z + ~ 1 . y 1 + ~ 2 . y 2  f o r  a l l  X E X ,  y 1 cy1 y 2 E Y ~ .  - 

- -- 

Suppose now t h a t  v=e. Then by (28) and ( i i )  o f  CQ, , we have: 

o r  

Hence by Lemma 3: 

(30) w = e  ( i f  V=e,) r 
-2 

We then have from ( 2 8 )  ( i f  i = e , ) :  

(31) w - g  (x)tw .y f o r  a l l  y cy l ,  XEX, 

By ( i )  of  CQ1, jxi&int(X) 3 g(l)(xi)EY1. Since x E i n t ( X ) ,  

-1 ( 1 )  -1 1 1 

i 

-F 3 N(x )GX. 

We then have by Leinma 4: 

3Nl(yi)GEq 3 Nl(yi)Gg(’)[N(xt)I. 

Hence by (31) ,  we have: 



. 
19 

I t  then follows from Lema 3 t h a t :  
-1 

9 n 
Combining (30) and  ( 3 2 j ,  we see t h a t  i f  v=o 

<v, w >  = 0 

(32)  w = e  ( i f  V=e  ) .  

we have: n ’  
- -  

n+p ’ 
contradicting ( 2 5 ) .  Therefore v#e, and QT has a GNSP a t  cy, v, %. 

\ 

Q.E.D. 

The following resu l t  i s  almost a special case of Theorem 3”; a n d  

i s ,  moreover, essenti  a1 l y  a speci a1 case of Professor Hurtii cz ’ s Theorem 

V.3.1 in [81 ( p .  91) .  I t  i s  included here f o r  the sake of completeness. 

THEOREIS 4 - COROLLARY ( H U R W I C Z ) :  

I f :  

1.) d, g ,  X ,  Y >  defines a maxiniization problem, IT, where: 

a . )  X i s  convex, 

b . )  
t 

f i s  concave (u. , En-concave) on X ,  

c . )  in t (Y)#@,  g i s  Y-concave on x 

2 . )  g s a t i s f i e s :  

C Q ~ :  3x*a 3 g(x*)E: int(Y),*’ 

;EX i s  a solution of T; 
7 

3 . )  

then 
3- + v $ E n  \{en 13,  i ~ Y * . 3  Q has a GNSP a t  <y, v, W>. 

T r  

PROOF: 

Re-examining the proof of Theorem 3 ,  we see t h a t  t h e  only steps in 

the arguinent which used the assumption int(X)#@ were in the  proof t h a t  
- 
v=Bn implies w’=e 
o f  Theorem 3. 

Hence Theorem 4 follows as a corollary of the proof 
9 ’  

Q . E . D ;  
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3:  

THEOREM 5 - COKOLLAKY: - 
I f :  

1.) < f ,  g ,  X ,  Y> defines a maximization problem, n, where: 

a . )  X i s  convex, int(X)#P), 

b . )  

c . )  g i s  a f f ine ,  

t f i s  concave ( i . e . ,  E,,-concave) on X ,  

2 . )  g s a t i s f i e s :  

3 . )  YEX i s  a solution of n; 

then : 
- - -  + 3%[En\{en}], %Y*3Qn has  a GNSP a t  <x ,  v, w>. 

Theorem 3 i s  a generalization and s l i g h t  correction of Theorein 3 i n  

Uzawa [14], p. 36.’’ An example of a s i tua t ion  wherein Theorem 3 ,  b u t  

n o t  Theorem 4 ,  i s  applicable i s  given by the l a s t  example on p .  5 ; i f  

the functions h i  appearing there are  assumed t o  be a f f ine  fo r  i = l ,  . . ., 
q, concave f o r  i = q + l ,  . . ., r ,  and convex for  i = r + l ,  . . . , p ( a n d  we 

suppose t h a t  X i s  convex, and f i s  En-concave on X ) .  

we define 

+ 
To see t h i s ,  suppose 

+ + 
Y 1  = { o  } ,  Y2=E,-q x[ -E 1 ,  and Y=Y,xY2. 

9 P-r 
We note t h a t ,  under the current assumptions, < f ,  g ,  X ,  Y> defines a 

maximization problem, and g i s  Y-concave on X .  

f o r  g t o  s a t i s f y  CQ, i n  t h i s  case,  since int(Y)=@.** We can ,  however, 

apply Theorem 3 i f  g s a t i s f i e s  C Q , .  

However, i t  i s  impossible 



I I  I .  CONSTRAINT QUAL1 FT CAT1 ONC A.ND THF 
GEOlilETRY OF GENERALIZED SADDLE POINTS 

Me s h a l l  beg in  o u r  d i scuss ion  o f  cons ide r ing  sonie face ts  o f  t h e  geomet r ic  

n a t u r e  o f  a GSP. Suppose we have a max imiza t ion  problem, 7 1 ,  d e f i n e d  by 
- - -  

<f, g, X,Y>, and suppose (PT has a GSP a t  <x, v, w>&Emtntp. Then 

( 1 )  V E E ~ ,  WEY*, 

and 

( 2 )  v . f ( x ) t W . g ( x ) ~ V . f ( X ) t ~ ~ g ( X ) ~ V . f ( x > + w . g ( ~  - - f o r  a l l  XEX, w&Y*. 

I t ' i s  c l e a r ,  then, t h a t  t h e  ex is tence o f  a GSP a t  <x, v ,  w> i m p l i e s :  

- t -  

- 

- - -  

- 
( 3 ) w * g ( X) = 0. 

( 4 )  Z,-f(X) 3 YEY; 

There fo re ,  i f  b=<z, y>&E i s  such t h a t :  
n+P 

we have: 
- 
v f (X) t-w. g (X)Lj .  z t i .  y . 

R e c a l l i n g  t h e  d e f i n i t i o n  o f  t h e  s e t  B used i n  S e c t i o n  11: 

(5 )  B(T, x) = {b=<z, y>&E I z > f ( x ) ,  YEY) ,  

we see t h a t :  

( 6 )  v . f (x ) t i .g (X)Lv .z+w.y  - for a l l  <z,  y>&B(.rr, y ) .  
Moreover, by ( 1 )  and ( Z ) ,  we see t h a t  if ;EX and a=<s, t>EE 

t h a t :  

- 
n+P 

- 

are  such 
n+P 

f (;;)>s, - g(^x) - k Y ,  

V' [ f (^x ) - S k O ,  - w. [ g (^x ) - tlzo ; 
then 

- 

and t h e r e f o r e  
- 

( 7 ) v * s tw. t;'v. - f ( ̂x ) t i -  g ( ̂x )_<_v. -- f ( X) t i .  g (X) . 



. 
2 2  

2 

Recalling our def ini t ion o f  the s e t  A given i n  Sec t ion  T I :  

(8) A ( ~ I )  = {a==%, t > E E  I flxxEX)f(x)>s, - g ( x ) - t E Y ) ;  
n+P 

I LE see t h a t :  
- 

( 9 )  

I f  as i n  Section I1  we write 

v . s + ~ . t ~ ~ . f ( x ) t - w . g ( x )  f o r  a l l  <s, t x A ( 7 r ) .  

(10) h71(X) = < f ( X ) Y  g ( x > > ,  

and 
t - -  

( 1 1 )  U I < v ,  W >  E E x Y * ,  n 

we have by ( 6 )  and ( 9 )  : 

(12) r.a$u.hT(x)cu.b - - f o r  a l l  a&A(r), bEB(.rr ,  a .  _ -  

From ( 1 2 )  we see ,  therefore,  tha t  a - necessary condition fo r  the existence 
t of a GSP f o r  QT a t  x i s  t h a t  there ex is t  a vector i=<v, K x E n x Y *  such t h a t  

u separates the s e t  A(r) and B(T, %) 

condition, as we showed i n  the proof of Theorem 2) .  

Qr a l s o  has a GNSP a t  x boils  down to  whether there e x i s t s  such a vector u 
which has v+On. 
qual i f icat ion i n  guaranteeing t h a t  such a 

- 
(Clear ly . th i s  i s  a l s o  a su f f i c i en t  

The question of whether 

We sha l l  now examine the function of  the constraint  

does exis t .  

Suppose we b e g i n  by examining a n  i l l u s t r a t i v e  s i tua t ion  i n  which no 

GNSP exis ts .  

example t o  show t h a t  the constraint  qual i f icat ion he'd introduced could n o t  

be dispensed with i f  one was concerned w i t h  the existence of a GNSP ( i n  

In his very iniportant 1950 a r t i c l e  [13], S l a t e r  presents an 

our terninology) . S l a t e r ' s  example deals w i t h  the maximization problem, 
+ - 

m, defined by < f ,  g ,  El, E l > ,  where 

f ( x )  = l-x 

g(x)  = - ( x - 1 ) .  2 

Clearly the only solution of t h i s  problern i s  a t  x=l. The image o f  the function 
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be 1 ow. 

F igu re  1 

+ + +  I n  t h i s  case, i t  i s  apparent  from F igu re  1 t h a t  no v e c t o r  ;&E1xE1=E2 

e x i s t s  which has a non van ish ing  f i r s t  coo rd ina te  and which separates t h e  

s e t s  A(T) and B(T, 1 ) .  

however, t h a t  % does have a 

GSP a t  x (as we would expect ,  s ince  a l l  t h e  hypotheses of Theorem 2 are  

Hence no GNSP e x i s t s  f o r  Qn a t  x=l. N o t i c e  , 

s a t i s f i e d  here) ;  i n  f a c t ,  QT has a GSP a t  <1, 0, 1>. 

I n  o r d e r  t o  examine t h e  workings o f  t h e  S l a t e r  C o n s t r a i n t  Q u a l i f i c a t i o n  

(which we s h a l l  h e r e a f t e r  r e f e r  t o  as t h e  S l a t e r  CQ) i n  a l i t t l e  g r e a t e r  

d e t a i l ,  suppose we c o n s i d e r  t h e  c lass  o f  max im iza t i on  problems, P ,  d e f i n e d  

by  < f ,  g, X ,  E?, where: 



(13) { f :  DtE,, 

and f and g are concave on X .  

If the S la t e r  CQ holds, we can distinguish two cases, as follows. 

Let TEP and suppose x i s  a solution of n. 

-- CASE 1:  g(x)>O.  

In th i s  case we ' l l  have the sort o f  s i tua t ion  shown in Figure 2 ,  

below. While we d o n ' t  have enough inforiliation t o  graph the se t  A ( T ) ,  
1 we know t h a t  the s e t  A shown in Fig. 2 will  be a subset of A(K) .  

Clearly, then, any vector separating A(n) a n d  B(T, x) must have 
- ul=y#O ( in  f a c t ,  any separating vector u must be a sca la r  multiple 

23 of  i = < l ,  0.). 

Figure 2 
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CASE 1 :  g ( x ) = O .  

In t h i s  s i t u a t i o n ,  according to  the S l a t e r  CQ, there e x i s t s  xAEX3g(x*)>0. 

Hence h7,(x*) must stand i n  something l ike  the relationship t o  h-(a 
shown i n  Figure 3 ,  below. 

II 

While once again we do not have s u f f i c i e n t  

information t o  g r a p h  A ( T ) ,  we know tha t  the s e t  A 1 shown i n  Fig. 3 

will  be a subset of A(.rr) .  Hence, i t  i s  c l e a r  from our  diagram t h a t  
4- - - -  

any vector u = < v ,  w>&E2 which separates A(.rr)  a n d  B(n, x) must have 

V # O .  
- 

Figure 3 

I t  i s  apparent from our discussion of the above two cases '(ana from a 

careful reading of the proof of Theorem 3)  t h a t  i f  m P ,  the S l a t e r  CQ does 

more t h a n  guarantee the existence of a GNSP f o r  

I t  actual ly  guarantees t h a t  i f  Qr has a GSP a t  < x ,  v, w >, i t  i s  necessarily 

a GNSP. 

a t  a solution of T .  

- _ _  

Consequently, i t  might appear t h a t  i f  one wished t o  concentrate 
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P 

on developing a s e t  of conditions su f f i c i en t  only t o  ensure the existence o f  
t a GNSP a t  x, a solution of IT, f o r  some C&EnxY* (and allowing for the 

p o s s i b i l i t y  of the existence of other vectors u = < v ,  w>'?+> <x,  v ,  w> i s  a 

GSP f o r  Q ~ ,  b u t  v = e n ) ;  one could weaken the S l a t e r  CQ f o r  th i s  purpose. 

However, i f  the S l a t e r  CQ does not hold, the poss ib i l i ty  a r i s e s  of 

obtaining the sor t  of tangency solution depicted i n  F i g .  1 ;  and i t  i s  

d i f f i c u l t  t o  see how any weaker condition could be developed which would 

have anything l ike  the "nice" operational properties of the S l a t e r  CQ, and 

which would guarantee t h a t  t h i s  s o r t  of tangency could n o t  occur. 

In the development of a theorem analogous t o  our Theorem 4 ,  Karlin 

introduced ([ lo] ,  p .  201) an interest ing constrajnt  qual i f icat ion o f  a 

form di f fe ren t  from the S l a t e r  CQ. Hurwicz and Uzawa proved i n  [9] t h a t  

i n  very general spaces these two constraint  qual i f icat ions were actual ly  

equivalent. Our next lemma i s  a special case of the Hurwicz-Uzawa r e s u l t .  

I t  i s  presented here f o r  b o t h  the sake of completeness a n d  because i t  

seems reasonable t o  take advantage o f  the more elementary spaces w i t h  which 

we're dealing t o  present a proof involving more elementary mathematics t h a n  

t h a t  used by Professors Hurwicz and Uzawa. 

LEMMA 5 (HURWI CZ-UZAWA) : 

I f :  

P '  
' 1  * )  XGDGE,, 9: D+€ 

2.) 

3 . )  

4.)  

X i s  convex and non-empty, 

YcEp is a convex cone, int(Y)#@, 

g is  Y-concave on X; 

then the following are equivalent: 

CQs: ' 3 x * ~ X  3 g(x*)Eint(Y), 

CQK: ( z E [ Y * \ { O  > ] ) ( j x ~ X ) :  z * ~ ( x ) > O .  
p .  
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PROOF: 

i .) CQS=XQK. 

I f  ?CY* i s  3 ?!.g(x*)=O, we have 
- 
z-g(x* )zT.y  f o r  a l l  YEY. 

Hence by  Leinma 3, y=O There fore :  
P '  

( Z & [ Y *  \{Opll) z*g(x*)>O. 

i i . ) CQK*CQs. 

Suppose CQK ho lds ,  b u t  t h a t :  

(13)  $x*eX3cj(x*) & n t ( Y ) .  

De f ine  

J 

A = { t & E  I (3xEX)g(x) - t&Y).  
P 

C l e a r l y  A i s  convex (see t h e  stateinent and p r o o f  o f  Lemma 1 , above), and 

non-empty. Moreover, i f  t h e r e  exist.ed a v e c t o r  t such t h a t  t & A n i n t , ( Y )  , 

then we would have: 

'3X 3 g(X)-TcY. 

Bu t  then,  s i n c e  & i n t ( Y ) ,  i t  would follo\b! t h a t :  

[g(X)-TJ+t = g ( T ) & i n t ( Y )  . 

( s i n c e  i f  y&Y, y & i n t ( Y ) ,  y + u i n t ( Y ) ;  f o r  Y a convex cone), which c o n t r a d i c t s  

(13 ) .  The re fo re :  

(14 )  Ani n t  (Y) = P I .  

Hence, s i n c e  the  convex i t y  o f  i n t ( Y )  f o l l o w s  f rom the  c o n v e x i t y  o f  Y;  we have 

by t h e  "Separa t ing  Hyperplane Theorem"(see Berge [6] , p .  163) : 

 WEE 3 P 
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? 

However, i t  i s  c lear  from ( 1 6 )  t h a t :  

( 1 7 )  WEY * , 
and from ( 1 6 )  and  the def ini t ion of  A t h a t :  

a 

(18) (XEX)  : w.g(x)(c). 

B u t  ( 1 7 )  a n d  (18) together contradict t h e  assumption t h a t  t h e  Karlin CQ 

(CQ,) holds. Therefore (13) i s  fa l se ,  t h a t  i s ,  3x%X-)g(x*)Eint(Y). 

Q . E . D .  

In reading the l i t e r a t u r e  on saddle point theorems fo r  the n o n -  

d i f fe ren t iab le  case, one i s  l ike ly  t o  get  the feeling t h a t  a constraint  

qual i f icat ion i s  n o t  needed fo r  t h e  existence of a GNSP i n  the case where the 

constraint  function g i s  aff ine.24 More precisely,  one might speculate 

t h a t  Theorem 5 of the previous section would remain correct if' hypothesis 2 

(CQ,) were omitted. 

in t h i s  case, however, as the following example shows. 

problem ?r be defined by < f ,  g ,  E l  , E l > ,  where X=D=E 

The constraint  qual i f icat ion cannot be dispensed w i t h  

Let the maxirnization 
t t  4- 

1 '  
0 for  x=O t 1 for  x>O 

fW- 

g (  x )  =-x. 

Clearly x=O i s  the only solution for y ,  and a l l  the hypotheses of Theorem 4 

are s a t i s f i e d  

and the image 

apparent t h a t  

except hypothesis 2 (CQ, ) .  25 

of the function k;; are  shown 

any vector c=<v, k E 2 .  which 

The se t s  A ( 7 )  and B(F, 9, 
in Figure 4 ,  below. . I t  i s  

separates A(T) a n d  B(T, x )  
- 
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Figure 4 
I 

must have v=O. I t  should be noted t h a t  

the need fo r  the constraint  qual i f icat ion i s  n o t  eliminated by requiring the 

maximimand function, f ,  t o  be continuous. 

Hence a. does n o t  have a GNSP a t  x. 
71 

The reader can eas i ly  verify 

t h a t  the maximization problem defined by <f, g ,  X ,  Y>, where 

D=X=[O, 11, 

g ( x )  = x-1 ,  
+ Y = El  o r  Y = @ ) ;  

does n o t  have a GNSP a t  i t s  solution, r = l .  

We have shown i n  the above examples t h a t  the constraint  qual i f icat ions 

used in Theorem 3-5 of Section I1 canno t  be dispensed w i t h .  Theorem 3 

can be proved, however, with any one o f  several constraint  qua l i f ica t ions ;  

which, a t  l e a s t  a t  f i r s t  glance, appear t o  be non-equivalent. Hence the 

following resu l t  may be o f  some in te res t .  

LEMMA 6 :  

I f :  

1 . )  Xc-;DcEm, g ( x ) = < g ( ’ ) ( x ) ,  g ( ’ ) ( x ) > ,  where g”.): D->E g(’): D+Er ,  - 
q ’  
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2 . )  x i s  convex, i n t ( X ) # @ ,  

PROOF: 

i.) Obvious ly  CQ4*CQl. To prove t h e  converse, d e f i n e  

yl- = g(2)(x’), y* = g ( 2 ) ( x * ) .  

Since y * ~ i n t ( ~ ~ \ 3 % ( 0 ,  1) 3 

(18) 

Def i ne 

Ty’t ( 1 -XI y *E i n t ( y2 . 

x = Ax t(1-Qx*.  -1- - 
t Then, s i n c e  x E i n t ( X ) ,  %O, and X i s  convex: 

(19)  x“Eint (X) .  

Moreover, s i n c e  g( ’ )  i s  a f f i n e ,  and Y, i s  convex: 

(20) g( ’ ) (S)  = ~ g ( ’ ) ( x t ) t ( l - ~ ) , ( ’ ) ( x * ) E Y l ;  

w h i l e ,  s i n c e  g (2) i s  Y2-concave: 

(21 1 g ( 2) (2 ) - [Xyyt+ ( 1 -X)y*] E Y 2. 

By (18)  and (21 )  , i t  f o l l o w s  t h a t :  

(22) { g (2) (i - [1yt t ( 1 -XI y *I I +{7yt t ( 1 -T> y*) =g ( ’I.( i )E i n t ( Y . 

I 
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' 2  

Thereforc, by ( 1 9 ) ,  ( Z O ) ,  and (22), we see t h a t  

of CQ,. Hence, 

s a t i s f i e s  the requirements 

i i  . )  Obviously CQ, $ CQ,. The proof o f  the converse proceeds i n  a 

This time we can fashion very s imilar  t o  t h a t  developed i n  ( i ) ,  above. 

chome k ( 0 ,  1 )  small enough so t h a t ,  l e t t i n g  
Y 

x = 'r;x**k+ (1  -X)x", 

we have: 
-" 
x & i n t ( X ) .  

We then can eas i ly  show, i n  the same way as i n  ( i ) ,  t ha t :  

Hence CQ,<$ CQ,. 

Q.E.D. 

By way of concluding our discussion, suppose we consider a problem 

tangent ia l ly  re la ted t o  the material o f  t h i s  sect ion.  

o f  saddle point theorenis t o  problems i n  Economics, one may be interested 

In many applications 

i n  conditions su f f i c i en t  t o  guarantee t h a t  w does not vanish. 

the vector wmay lend i t s e l f  t o  a "shadow price" in te rpre ta t ion ;  'and in 

these circumstances i t  i s  c lear ly  o f  some importance t o  determine whether 

For instance,  

o r  n o t  %3. 

qual i f icat ion i n  guaranteeing t h a t  Y f l ,  however, the following r e s u l t  i s  

f a i r l y  obvious. 

THEOREM 6 :  

I f :  

After our discussion of the function of the constraint  

1 . )  <f, g ,  X ,  Y >  defines a maximization problem,,, , 



- 
wye . 

PROOF : 
- _ -  

I f  ;=e, then by the existence of a GSP a t  <x ,  v ,  w>, we have: 
- 
v * f ( x ) 2 7 - . f ( X )  f o r  a l l  X E X ,  

B u t  this would  mean where %3,. 
- 
V '  f (X )̂LV. - f (X) ; 

which i s  impossible; since 
- 
v. [ f  ( x ^ )  -f (X)]>O. 

Hence i # S .  

Q . E . D .  

COROLLARY: -- 
I f :  

1.) <f, g ,  X ,  Y> defines a maximization problem, i r ,  where: 

a . )  X i s  convex, 

b . )  

c . )  

t f i s  concave ( i  - .e .  , En-concave) on X ,  

g i s  Y-concave on X, 

2.)  XEX is a solution f o r  n, 

3 . )  3LX 3 f(x^!>>f(T) , 

then 
+ -  ~TEE,,, we[Y*\COp1]3 n has a GSP a t  C y ,  '7, k>. 

PROOF: 

This r e s u l t  follows immediately f rom Theorems 2 and 6 .  



33 

s ta ted  in the above resul ts  require t h a t  the constraint  g(x),Y be e f fec t ive  

in the sense t h a t  the solution x i s  -- t i u i  ~1 so;Ut-;on of thc  preble!?:  

26 maximize f ( x )  subject t o  X ~ X .  

Moreover, in the special case where n=l ,  ( i . e . ,  - where f :  D>E, ) ,  we see 

t h a t  the effectiveness of the constraint  g (x )EY ( i n  the sense j u s t  s ta ted)  

i s  su f f i c i en t  t o  guarantee the non-vanishing o f  w.  - 27 

1 
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3c  
J U  

A P P E N D l X  

1 . )  I n  t h i s  s e c t i o n ,  we s h a l l  show t h a t  if f i s  d e f i n e d  on ET by  

f ( x )  = t f i ,  
then  $h 3 

+ 
h:  E1+E1, h ( x ) = f ( x )  f o r  XEE, , 

and h i s  concave on a l l  o f  El. 

PROOF: -- 

Suppose b.w.0.c. t h a t  t h e r e  e x i s t s  such a func t i on ,  h. Then c l e a r l y  

we must have: 

h(x)<O f o r  x<O. 

Suppose,  then, t h a t  we are  g i ven  2 0 ,  and 

(1 )  F h ( x ) < O .  

Consider  t h e  p o i n t  x de f ined by 

X L  (2) x = --- 4g 
C l e a r l y  x>O, and t h e r e f o r e  

X 
( 3 )  h(x)  = +fi = - > 0. 

2Y 

Def ine  

4y2 
4y2-x 

( 4 )  x = 

Then, s ince  x<O, we have: 

O<X<l. 

There fore ,  if h i s  concave, i t  must be t h e  case t h a t  



37 

v 

However , we have : 
p, 

xx + ( l - T ) Y =  0 ,  

h E x  + (1-X)YI = f(O) = 0, 

and therefore 

.? 

t 
w h i c h  contradicts ( 5 ) .  

h i s  n o t  concave. 

Consequently i f  h: ET*E1 and  h ( x )  = f ( x )  f o r  % E 1 ,  

2 .  ) 

As indicated previously ( n .  2 1 ) ,  there appear t o  be some misprints in 

PROFESSOR UZAWA'S THEOREM 3 .  

the statement and  proof of Professor Uzawa's Theorem 3 ,  pp .  35-37, in [14]. 

Because of the importance of the  Uzawa a r t i c l e ,  i t  would seem t h a t  a br ief  

discussion of these apparent misprints would be of some value; especially 

since the published version of Professor Uzawa's Theorem 3 (with niisprin-ts) 

makes i t  appear  t h a t  some of t h e  hypotheses of our  Theoreni 3 could be 

weakened in a fashion which would, i n  f a c t ,  make the theorem incorrect .  

Using the notation developed in t h i s  paper, the necessity portion 

o f  Professor Uzawa's Theorein 3 can be stated as follows: 

I f :  

1.) < f ,  g ,  Et , Y> defines a maxiniization problem, 71, where 

a , )  D=E,, 
rn 

i . )  f :  Em+El 

i i . )  g = < g  ('I , g ( 2 ) > ,  where 

b . )  

c . )  

d . )  

f i s  concave on E,,,, 

Y i s  of the form { e  }xEr 

g ' ' )  i s  a f f ine ,  g ( l ) ( x )  = G x t b ,  and we assume w.1 .0 .g .  t h a t  

t 

9 

r a n k  ( G )  = q ,  
t e . )  g(') i s  concave (Q., Er-concave) on En,, 
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2 . )  g s a t i s f i e s :  

- 
i i ( 1 )  i - 

C Q ~ :  for each i, i = l ,  . . ., m , 3 x  > e r n . 3  x i > 0 ,  g 

3 . )  YEX i s  a solution of T ;  

( x  ) = e q ,  g ( 2 ) ( x i ) > o r ,  

then 
t ~ W E Y * ( = E  xE ) 3  (Pn has a Saddle Point a t  <x, W>. 

q r  
This statement i s  incorrect ,  the problem being a misprint in the 

Constraint Qualification, apparently. We can verify t h i s  as follows: 

F i r s t  of  a l l ,  we note t h a t  m,, i s  equivalent t o :  

(To show t h a t  qu=>m, l e t  

x' = Cm 

The following then provides a counterexample ( i t  was, of course, 

Xix i , where X.>O f o r  i = l ,  . . . , m ;  and Ci, lhi=l)  m i = l  1 

developed from the counterexample presented by S la t e r  in [13]) t o  the above 

statement. Let 

f ( x )  = x1 t2x2  

g ( x )  = < p ( X ) ,  g ( Z ) ( x ) >  = <x 1 t x  2 4  - ( 2 x , t x 2 -  3 / 2 ) 2 > .  
4- t Let T be defined by ( f ,  g ,  E 2 ,  { O I x E l > .  

s a t i s f i e s  hypothesis 1 , and t h a t  x = < 1 / 2 ,  1/2> s a t i s f i e s  cq and i s  t h e  

We can readily verify t h a t  n 

solution of n. We can readily show, however, t h a t  i f  there existed a 

weElxE; 3 ( P n  h a d  a Saddle Point a t  <x, i>, i t  would be necessary t h a t  
- 

- x1 -112 1 
f o r  x1&[O, 1 / 2 )  , x 1 t x 2  = 1 .  - w > - - - - -  - 

( X l  -1 / 2  12 1/2 - x1 2 =  

B u t  this i s  impossible, since t h e  expression oil the r i g h t  approaches -w as 

xl-+l/2 . - Hence &kE1xE; 3 Qn has a Saddle Point a t  <x, k>. 

Professor Uzawn 's  Theorem 3 becoiiies correct i f  we subs t i tu te :  



which i s  apparently the constraint  qualification which would  have appeared 

i n  his Theorem 3 b u t  f o r  the misprint. Equivalently, we could use: 

CQ4: + i  j x  "8, 3 g(')(x')=O, g( 2) ( x  i )>>e . 

I t  should also be pointed o u t ,  however, t h a t  there i s  a misprint of 

some significance i n  Professor Uzawa's proof. 

should be defined by ( i n  Prof. Uzawa's notation):  

The s e t  B used i n  the proof 

B = { < z o y  Z ,  y>I z o > f ( x ) ,  z I =0 ,  z1'>0, ~ 2 0 ) .  
- 
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portion of  an e a r l i e r  version o f  this paper was presented in Lawrence 
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Theoretical and  Applied Economics. 

'If - -  g :  DjE,, where DGEm, i s  convex, we say t h a t  g i s  CONCAVE - on D 
2 i f  fo r  a l l  x l ,  x ED, and  for  a l l  scalars k [ O ,  13, '  we have 

1 2 g [ h  +( l -x)x I ,xg (x ' )+ (  - 1 - x ) g ( x 2 ) .  . 

A function, g ,  i s  CONVEX i f  -g i s  concave. 

a t  

'A l i ne  of development f i r s t  explored by S la t e r  [13]. 

'Kuhn and  Tucker, in [ l l ] ,  had  begun t h i s  investigation with t h e i r  
consideration of the "vector maximum problem.'' 

5The terminology used here i s  n o t  qui te  consistent w i t h  normal 
mathematical terminology, since the term "aff ine" i s  normally used for  
a mapping of a space in to  i t s e l f .  
" l i nea r , "  however, since ' ' l inear ' '  i s  normally taken to  mean ( i n  the 
Euclidean case) t h a t  g i s  o f  t h e  form g(x )=Gx.  

"Affine" seems t o  be a be t t e r  term t h a n  

60ur notation here i s  an adaptation of tha t  introduced by Hurwicz i n  
[SI.  Note t h a t  we're using r generically t o  denote maximization problems 
of the type defined i n  Definition 3 .  
treatment here i s  somewhat asymmetric. If YGE i s  a convex cone, the 
ordering defined by x 3 y  i f f  X-YEY is w h a t  i s  anown as a vector ordering. 
Moreover, the ordering, >, of E which we've defined in the t e x t ,  i s  a 
special case of a vector-orderiRg. 
would be t o  deal w i t h  maximization problems, IT, defined (given the s i tua t ion  
of Definition 3) by <f, g ,  X, > , : >, where > i s  a vector ordering of En 
and 2 i s  a vector ordering of? .-qde would d e n  say t h a t  x i s  a solution 

I t  should also be noted t h a t  o u r  

Hence in many ways a more natural approach-  

of .Tr I f f :  P 
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This i s  the kind of approach taken by Prof. Hurwicz in [8] ( a  niore symmetric 
a p p p y ! ?  ;s a l r ;o  c - i l - O ' - J  I u \ ~ ~ ~ ~  UY L . .  I)-- LIK pr.eseni; a u t h o r  in [ 1 2 j j .  For the purposes 
of t h i s  paper, however, i t  seemed t h a t  the problem under discussion here 
was su f f i c i en t ly  simpler t h a n  t h i s  more syininetric treatment, and  su f f i c i en t ly  
general ,  t o  j u s t i f y  o u r  Definition 3. 

'Recall, however, t h a t  we intend t o  t r e a t  only the case where the 

8A case of t h i s  s o r t  which i s  familiar t o  Economists occurs when f 

functions f and  g are n o t  necessarily d i f fe ren t iab le .  

i s  a vector of u t i l i t y  functions, and we are seeking a Pareto-Optimal 
point. 

'Moreover, i f  g ( l )  i s  a f f ine ,  h i  i s  concave f o r  i=q+ l ,  . . ., r ,  and 
convex fo r  r + l ,  . . . , p ;  g will be Y-concave, so t h a t  the necessity resu l t s  
o f  Section I 1  will a p p l y .  Note in par t icular  Theorenis 2 and 3. 

"As i s  apparently the case in the parenthetical remark on p .  780 of 
the valuable work by Arrow and E n t h o v e n  [2] .  
and Enthoven did n o t  mean t o  imply t h a t  a function defined and concave on 
a convex subset of Em could be extended t o  a function defined and concave 
on a l l  of E m ;  b u t  ra ther  t h a t ,  under these circumstances, i t  coirld be 
extended t o  a function defined and quasi-concave over the whole space. 
l a t t e r  statement a lso appears t o  be incorrect ,  however, as the following 
example shows. 

I t  may be t h a t  Professors Arrow 

Th i s '  

Let f be defined on E f \ C O )  by: 

f ( x )  = log x .  
+ 

Then f i s  defined and concave on €1 \ { O } ,  which i s  a convex s e t ,  b u t  i t  i s  
c lear  t h a t  there i s  no way of extending f t o  a real-valued function defined a n d  quasi- 
concave 
the statement in question i s  in the nature of an  as ide,  and  in no  way 
af fec ts  the tex t  of the Arrow and Enthoven a r t i c l e .  

continuous derivatives o f  a l l  orders on the i n t e r i o r  o f  E;, b u t  which i s  
nonetheless n o t  extendible i s  provided by: 

over the whole space. I t  should be emphasized, however, t h a t  

+ 
An example of a functioii which i s  concave a n d  continuous on El,  has 11 

f ( x )  = +fi fo r  X ~ O .  - 

For a proof t h a t  th i s  function i s  n o t  extendible see Appendix ( 1 ) ,  p .  36. 

Note t h a t  i f  n=l ( i . e . ,  - i f  f :  D + E 1 ) ,  we have 
'*This terminology i s  a n  adaptation of t h a t  introduced by Hurwicz in [8]. 

* .  

Q$x, 1 ,  w )  = f ( x )  + w-g(x);  

which i s  the usual form of the Lagrangian expression. 
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13The types of saddle pcints introduced here -. are  given somewhat 
d i f f e ren t  def ini t ions by t h e  au tno r  in L i z ] .  
reduce t o  the def ini t ions presented here, however, for the type of 
maximization problem with which we are concerned in t h i s  paper. 
the notation i s  an a d a p t a t i o n  of t h a t  introduced by Hurwicz in [8). 

Ine concepts developed there 

Once again 

14Ne denote the se t - theore t ic  difference of A and B by A \ B ,  k, 
A\ B = {a&Al akB).  

15The author i s  grateful to  Dr. Mohamed El-Hodiri f o r  bringing b o t h  
the book and  t h i s  par t icu lar  theoreni t o  his a t tent ion.  
by Berge i s  a lso implici t  i n  Uzawa's proof of his Theorem 2 in [14]. 

basic question i s  whether a GPSP ex is t s .  We shal l  n o t  examine t h i s  
question in the present paper, b u t  the a u t h o r  has essayed - - -  such an investiga- 
t ion in  [12]. Note, however, t h a t  i f  T has a GNSP a t  < x ,  v ,  w , and we 
define F ( x )  = v - f ( x ) ,  and  consider the maximization problem, n1, defined 
ty < F ,  g ,  X ,  Y> , r1 vas a Saddle Po in t  a t  <x, i>. Therefore, by Theorem 1 , 
x i s  a solution of n . 

17Lemma 4 i s  more or less  a s t a n d a r d  r e su l t  of Functional Analysis, 

The theorem s ta ted  

16The reader might argue, however, t h a t  in view of Theorem 1 ,  the more 

This property i s  often useful in applications.  

and in f ac t  i s  usually proved for  spaces of greater  generali ty t h a n  those 
with which we are dealing here. 
locate a reference presenting the special case of Lemma 4 (which makes 
possible a more elementary proof t h a n  t h a t  usually p r o v i d e d  i n  the 
tex ts  on Functional Analysis). 

18Note t h a t  we can generalize th i s  theorem by subst i tut ing 

The a u t h o r  has been unable, however, t o  

This i s  why a proof  i s  included here. 

i i ' )  g ' ' )  i s  open a n d  Y1-concave on X,  fo r  hypothesis l -d - i i  
of the t ex t .  

''It i s  n o t  qui te  a special case o f  Theorem 3 ,  for the reader will note 
t h a t  the assumption 

i s  n o t  included in the hypotheses of Theorem 4.  

qual i f icat ion introduced by Sla te r  i n  [13]. 
general form by Hurwicz in [SI. 

qual i f icat ion in Professor Uzawa's theorem. 

"The reader will recognize t h i s  as a generalization of the constraint  
I t  was f i r s t  used in t h i s  

*lThere i s  a n  apparent misprint in the statement of  the constraint  
Me sha l l  discuss t h i s  resu l t  

0 .  i n  Appendix ( 2 ) .  
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r; 

22Def jn ing  J3)  = -p? 2nd V-I--t.,‘’ .,rf dues n o t ,  o f  course, solve the  
‘-cq” ‘ 2 3  

4 

problem e i t h e r ;  s ince,  defining g = < g  (’I , g(’), g t 3 ) >  , the existence of 
an x*&X sat isfying CQ, would then involve a contradiction. 

i n  the sense t h a t ,  i f  f and g are concave on X ,  x malimizes f subject  t o  
xcX. 
3kX 3 f (x^)>f(x) .  Define 

“ 
t 23Notice t h a t  in t h i s  case the constraint  g ( x ) E E  - i s  n o t  e f fec t ive  

We can show tha t  t h i s  must be the case by supposing b.w.0.c. t h a t  

, and = x?- t (1-T)?. - -g(x^) x =  
-s(x^>l 

Then 

O<x<l , so t h a t  %EX; 

b u t :  
- 

g(”x)&(x)t( l - l ) g ( i )  = 0 ,  and 

f (x“ ) g f  (Y )  t ( 1 -X) f (2  )> f (X) , 
which contradicts the assumption t h a t  %- i s  a solution of ‘IT. 

we can show the same re su l t  by the following reasoning. 
Theorein 2 t h a t  a GSP ex i s t s  f o r n  a t  X; and therefore we have by the 
parenthetical remark i n  the t ex t :  

Alternatively,  
I t  follows by 

f(x)$f(Y) f o r  a l l  XEX. 

24See, e :g . ,  Karlin [lo],  Theorem 7.1.2,  p. 203. Note, however, t h a t  
the example i n  the t e x t  i s  n o t  a counterexample t o  Professor Karlin’s 
theorem, which requires ( i n  the context of our example) f t o  be defined 
and concave over a l l  of E l .  

except CQs. 
correct  i f  the assumption t h a t  g i s  affine i s  subst i tuted for  CQ,. 

25Note, moreover, t h a t  a l l  the hypotheses of Theorem 4 are s a t i s f i e d  
Hence t h i s  example also shows t h a t  Theorem 4 does n o t  remain 

26See p.24 and  n .  23, above. 

27See [12] fo r  applicationsof these resu l t s  t o  Activity Analysis. 

e .  


